
5HWULHYDO�DQG�$GDSWDWLRQ�RI�&DVHV�8VLQJ�DQ�$UWLILFLDO�1HXUDO�1HWZRUN

Ricardo B. Sovat André C. P. L. F. de Carvalho

Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, SP, Brazil
sovat, andre@icmc.sc.usp.br

$EVWUDFW

One of the main issues in the research of Case-Based
Reasoning systems is the retrieval and adaptation of cases.
This paper proposes the use of Artificial Neural Networks
for the retrieval and adaptation steps of a Case-Based
Reasoning cycle. Its main goal is to handle cases in the
domain of Artificial Neural Networks models design.
Moreover, it addresses questions related to the attributes
relevance and the coding of the inputs and outputs of an
Artificial Neural Network.

,QWURGXFWLRQ

This paper proposes a mechanism, based on Artificial
Neural Networks (ANNs) for the retrieval and adaptation
of cases. This mechanism was necessary due to the nature
of the cases treated by the Case-Based Reasoning (CBR)
system designed by the authors. Each case represents an
ANN designed by an expert to solve a particular problem.
This work deals with the problem of selecting and adapting
these cases. These cases can be used to support the design
of ANN to deal with new problems.

The reason behind the use of CBR for the design of
ANNs is the lack of a clear set of rules to select the free
parameters of ANNs. In spite of the growing use of ANNs
in the design of intelligent systems, there is a lack of a well
established knowledge on how to obtain the better
performance or the best fit between an specific model and
a given task (Haykin 1994). The approaches used are
basically empirical. A novice user usually has difficulties
to design an efficient ANN to solve a given problem.

During the development of the case base, the authors
observed that most of the cases presented a relatively small
case section followed by a larger solution part. Besides,
similar to the way a specialist works, the initial selection of
a paradigm, even being important, was less decisive than
the tuning of its several parameters. In this tuning process,
however, the correct setting of initial values seems to have
a great influence.

Inside the CBR approach (Kolodner 1993), this means
that the adaptation step plays a major role in the process. A
large amount of the time would be spent adjusting the

Copyright © 2001 Ricardo Sovat, André Carvalho

parameters of the proposed final model. This kind of
adjustment requires, usually, either the direct user’s
interference or the firing of a sequence of rules, inside an
environment where the knowledge is not well structured.
The adaptation of cases is one of the main open problems
in the design of CBR systems. As a result, it was decided
to test the performance of an ANN working at the same
time as an indexing and an adaptation method.

This paper is organized as follows: the next section
makes a brief reference to previous related works, as well
as the placing of the proposed system inside suggested
taxonomies. After this, another section will show how the
case base was constructed. The features taken in account
when creating the ANN model chosen for perform the
indexing/adaptation task and its basic mechanism are
presented in the last section.

5HODWHG�:RUNV
The use of ANNs inside a CBR cycle (Aamodt and

Plaza1994) has been proposed by many research groups:
(Shin and Park 2000), (Corchado and Lees 2000), (Malek
2000), (Fabiunke et al. 1997), (Domeshek 1993), (Petridis
and Paraschidis 1993), (Sase et al. 1993), (Wendel 1993),
(Becker and Jazayeri 1989) and (Thrift 1989). This can be
seen not only as a research issue, but also as a natural
tendency in CBR methodology: the integration of CBR
with other intelligent techniques.

According to these previous works, the integration can
be achieved either through the division of tasks between
the case-based reasoning system and the neural network or
by the design of an intelligent architecture combining
neural networks and case-based reasoning features. For the
first approach there are, according to Reategui and
Campbell (Reategui and Campbell 1994), four alternatives
which generalises the different paradigms used:

• &HQWUDO� &RQWURO, where the case-based reasoning
and the neural network are controlled by a central
device;

• 'LVWULEXWHG�&RQWURO, where the control is divided
between the two techniques;

• 1HXUDO� QHWZRUN� GRPLQDQW, where the control is
biased towards the neural network.

• &DVH�EDVHG� UHDVRQLQJ� GRPLQDQW, where the
control is biased towards the case-based reasoning
component;

The work described in this paper belongs to the last of
these alternatives.

Also, according to Hilario (Hilario 1997), the proposed
architecture is defined as a hybrid approach (combine
neural networks with symbolic models), sub-classified as
functional (incorporate complete symbolic and
connectionist components) with a coprocessing integration
mode (the two components are equal partners in problem
solving process, each interacting directly with the
environment and receiving information one from the
other).

7KH�&DVH�%DVH
In order to capture the main features taken into
consideration by a specialist or an expert user during the
selection and configuration of an ANN model, three kinds
of information were selected:
• task type;
• data profile;
• environment available.

The information about the task involve essentially the
kind of application:
• classification (including clustering);
• regression (forecasting or function adjusting)
• optimization and the data format (numerical, symbolic

or both).
According to the task, specific information can be

required, e.g., the number of classes, the number of sample
features (sample attributes) or the look ahead distance.
This request can be introduced using preprocessing rules or
adjusting the weights of the respective descriptive
attributes. For an initial experiment, only classification
tasks are considered.

The data profile is obtained from a set of statistical
measures taken from the correspondent dataset. The initial
measures set is influenced by the fact that the first task
type to be examined is classification, but future expansions
are being studied. It comprehends the total amount of
samples, the ratio between the standard deviation inside
each class and the standard deviation of the whole dataset,
the coefficient of excess (kurtosis) and the coefficient of
skewness of the dataset.

These measures are calculated as an average of all the
continuous attributes of the dataset to be classified. At this
point, two different ideas are being considered : to expand
the coefficients to discrete variables, using an adequate
formula, or to keep the discrete values out of the average
calculation, introducing an extra attribute expressing the
total amount of discrete variables.

The statistical measures aim to provide an indication of
how easy or difficult will be the ANN training. There is a
simple measure (amount of samples) that is fundamental,
once it denotes the basic power of the training phase. The
other three measures try to express the general shape of the
data distribution. For each class, the farther the standard

deviation ratio gets from 1.0, the higher the chance that
this class characterization will be different of the whole
dataset behavior, suggesting it will be more or less easily
learned. The last two coefficients try to give an idea of the
proximity of the data to the normal distribution.

The coefficient of excess shows the distribution flatness,
indicating the presence of relevant data even far from the
mean. The skewness coefficient reveals asymmetry
between the classes distribution, with a class being more
present than others theoretically making the training
harder.

Other measures could also be added, including values of
correlation between the attributes or features commonly
used by theory of information analysis, as the data entropy.
However, the idea is to keep the measures set minimal, in
order to allow hints of the dataset shape without having to
perform expensive calculation, sometimes not available in
the most common statistical packages.

Not only the network parameters will be influenced by
these selected measures, but also the choice of the
paradigm. Data presenting a low level of error rate, or a
high degree of separation between classes, will be satisfied
by simpler models.

Originally, environment data aim to provide information
about possible restrictions or lack of computing resources
that can be faced by the user. It includes, basically, the
computer used, the time available for the training of the
ANN and the user’s experience. Its main influence takes
place in the training error tolerance required. With the
continuous increase in the computational power of
personal computers and since the final system seems to be
more aimed to novice users, these fields probably are
going to always receive very similar values, thus
decreasing its discrimination power and tending to not be
taken in account during the indexing phase.

Since the goal of the work is to test the performance of
an indexing mechanism, the case base is being built as a
flat memory. This will simplify its construction,
consequently turning the search for the best case more
difficult. The attributes describing the desired task will be
used as indexes, if necessary, to speed up the retrieve step.

In this context, two steps are planned for the adaptation
phase. The first step will be accomplished by the ANN. It
includes any kind of preprocessing needed to conform the
user case in order to ease the matching with the base cases.
It also includes initial adaptation operations that complete
the case retrieved by adding any attribute needed which is
not in the base case.

Due to the variety of possible solutions, it is common to
have a good solution that does not have all the parameters
needed to configure the final model. Many parameters are
unknown or not informed by the original designer. Even
being a good solution, for this case, some attributes were
considered irrelevant. If those attributes were left for the
user to choose, the design process would became more
difficult. The ANN, after performing the selection of the

)LJXUH�����$VVRFLDWLYH�0HPRU\�2YHUDOO�)XQFWLRQLQJ

best case, executes an initial parameters completion,
somehow introducing an implicit model, without having to
make it explicit by using rules.

The final adaptation, however, deals with the
transformation part of the process and is accomplished by
rules. This kind of adaptation does not add (or remove) any
attribute, but it changes the values in the current attributes.
These changes are related mainly to the network topology.
This kind of parameter differs from the rest, once they can
be determined reasonably well, using algebraic formulae.
The CBR shell employed to test the base is able to
represent both kinds of adaptation. It builds the case base
from a script where all the elements previously mentioned
can be specified. Beside them, some generalizations will
also be included. When matching the continuous values, as
in the statistical measures, values ranges will be defined, in
order to ease the matching process.

8VLQJ�WKH�$11�WR�5HWULHYH�D�&DVH
The basic idea in introducing an ANN into the retrieving
step is to implement a pattern recognition method able to
correctly identify similarities between two attribute
vectors. In order to perform an initial adaptation, this
method needs to complete the pattern recognized, so that a
full vector can be obtained. The solution proposed to this
problem is to use an associative memory. This model will
be trained to associate each case in the case base to a
vector of constant length. Initially, the ANN employed will
be a MLP network trained with the backpropagation
algorithm (Haykin 1994), to start with a well known

implementation. However, other associative models are
intended to be tested, like an ART2 network (Carpenter
and Grossberg 1987).

The ANN input layer will have as many units as
necessary to code the attributes of the stored cases. In
order to represent the cases inside the CBR shell, those
attributes can be expressed in one of five types :

• numerical (real or integer);
• enumerated (discrete);
• lists;
• strings;
• booleans.
Numerical and boolean attributes use one unit each to be

represented, directly in a numerical format. Enumerated
attributes have to be first encoded by an algorithm that
takes in account the existence or not of internal
similarities, as it happens when there is an order inside the
enumeration, for example. This information is included in
the base, next to the enumerated attribute definition.
Usually, enumerated attributes need as many units as the
cardinality of the enumeration.

Lists attributes can contain any of the other types, and
they will be handled in the same way as if they are not list
members. In this first version, string attributes are not
being used as inputs, just as auxiliary information.

After the conversion and normalization of the attributes,
they are presented to the ANN’s input layer. The ANN
output layer has a fixed number of units divided in two
areas. The first area is composed of eight units and always
represents the same solution attribute group: the ANN

model (MLP, RBF, SOM), the sizes of the test and
validation subsets, the number of epochs between
validations, the activation function, the initialization
function, the updating function and the learning rate
(learning height for SOM’s).

Next to this area, there is a five units group that holds
values that can vary in meaning. It is important to notice
that, for the associative memory training, these meanings
make no difference, because there is no meaning context to
the ANN. After the association, rules are used to transform
the numbers in the respective parameters, according to the
chosen model. Thus, for example, the first unit of this
group can indicate parameters like the momentum rate in a
MLP model or the learning radius in a SOM model.

The hidden layer is being kept with a size (number of
units) between the number of attributes of the stored cases
and the quantity of output units. This size itself will be
determined empirically or obtained after a pruning method.

In spite of the advantages expected, employing an ANN
as the indexing method presents two new problems. The
first one is the need of periodically retraining the ANN.
This happens because the network learns the initial case
base, presented when it was first trained. As the system
begins to learn new cases, this mechanism tends to became
inaccurate. The second problem comes from the inability
of a simple ANN model in ranking solutions. The ANN
can choose a case from the base, but it can not provide a
second or third best suggestions.

In order to find a solution to both problems, the authors
adopted a model of associative memory inspired by Tetko
in (Tetko 2001). In this model, two methods work in
parallel: a set of ANNs (in this case just one ANN
executed many times) and a nearest neighbor (k-NN)
algorithm.

The k-NN result is used for two goals : to adjust the
ANN’s output and to provide a optional ranking, in the
case of the first selected case not be approved by the user.

The associative memory overall functioning is
illustrated in Figure 1.

Following the suggestions proposed by the associative
memory used, the ANN output vector] obtained from the
user case [may not be the final value, requiring
adjustments. Thus, a group of Q cases (selected initially
using the base index definition, through the k-NN
algorithm) is also inputted to the ANN, generating a set of
vectors V. Since these cases were used to train the ANN,
the correspondent output vectors should be equal to the
solutions stored in the case base. This would always
happen if the ANN was updated and able to work without
introducing errors. When this does not occur, any
discrepancies are stored in a set of vectors V¶.

In order to obtain these vectors, continuous variables
simply have their differences calculated. Discrete attributes
are submitted to a brief adjust to take into account the
internal proximity.

At this point, the k-NN algorithm is able to obtain its
ranking of the cases, by calculating the distance G between
each vector V and the vector].

However, in order to achieve the best adjustment to the
initial proposed solution, the final ANN proposed solution
will be the vector]¶. This vector is the sum of the vector]
with a vector V¶N�, which contains the arithmetic average of
the�N nearest vectors V�belonging to the k-NN ranking..

The correction provided by the k-NN algorithm creates a
second level of knowledge, perhaps better described as a
local knowledge, complementing the global knowledge
stored in the ANN. The ANN can make a first selection.
This selection will be as good as the proximity of the
current case base to the original one used for the training
of the ANN. This method compensates the problem of the
ANN outdating.

As the case base grows and the ANN is kept without
training, the k-NN correction becomes larger. A value can
be established for this correction so that it forces a new
training of the ANN, but it does not have to be executed so
often. Even when the ANN is recently trained, the k-NN
adjustment is expected to be more influent as the case base
gets larger, due to the consequent higher complexity of the
solution space and the possible decrease in the ANN’s
generalization power.

Besides, the case ranking constructed by the k-NN
algorithm can be used to reselect cases if necessary. Each
case in the ranking was presented to the ANN input layer,
(furnishing an output vector V) and can continue the CBR
cycle. As an initial approach, the k-NN algorithm
implemented in the shell uses Euclidean distances as the
similarity measure.

To properly process an input, the ANN input layer
representation has also to handle the problem of missing
values in the case base. These missing values come from
attributes whose values were not defined by the user.

The encoding algorithm handles these values in two
different ways: ‘unknown’ and ‘undefined’ attributes.
Attributes not present in the case or assigned as ‘not
applicable” by the user are treated equally: they are
regarded as not influencing the selection and considered
undefined. Attributes marked as ‘unknown’ are managed
differently. They are considered as existent and influent.

 The ‘unknown’ values are substituted by the arithmetic
average (or mode, for discrete fields) of all values of that
attribute appearing in the case base, both in the k-NN
algorithm and the ANN input layer.

The ‘undefined’ (or ‘not applicable’) attributes cause the
k-NN algorithm to make their distances equal to zero.
However, the ANN cannot do the same. Such inputs have
to receive another neutral value, once zero is significant to
the algorithm. This value is the arithmetic average (or the
mode) obtained from the base attribute values, but only
considering those appearing in a case together with values
equal to the actually provided by the user. Occurrences of

an attribute not being observed at the same time of those
appearing in the user case are not taken into account.

&RQFOXVLRQ
At this moment, this work is in the beginning of the case
base construction, what does not allow a representative
benchmark to determine its performance.

However, the development environment used allows to
perform tests with the retrieval and the adaptation phases
of the CBR cycle, both using or not the proposed ANN
associative memory. If the ANN is disabled, it is possible
to work only with rules and the k-NN algorithm. This will
be used to compare both approaches.

In order to measure the quality of the solution provided
by the system as a whole, the ANN models proposed by
the CBR methodology will be compared with those
constructed by human experts.

It is important to stress that the adoption of an ANN
inside the CBR cycle aims mainly the achievement of a
better implementation of the adaptation step. Nevertheless,
there is also a great interest in the study the possible
alternatives for the hybridization among the connectionist
approaches and the traditional nearest neighbor methods
employed during the indexing and retrieving.

As future works, beside the immediate increase of the
case base and the performance tests, the authors plan the
experimentation with other types of associative memory,
and the selection of alternative k-NN distance measures.
On the final system itself, it is intended to diversify the
case base, with the inclusion of cases related to other task
types, the expansion of the ANN models covered and the
incorporation of new case and solution attributes.

$FNQRZOHGJPHQWV
The authors would like to thank the support received from
FAPESP, the São Paulo State research agency

5HIHUHQFHV
Aamodt, A. and and Plaza, E. 1994. Case-based reasoning:
foundational issues, methodological variations, and system
approaches��$UWLILFLDO�,QWHOOLJHQFH�&RPPXQLFDWLRQV, �, 39-
59, March.
Becker, L. Jazayeri, K. 1989. A Connectionist Approach to
Case-Based Reasoning. '53�:RUNVKRS�RQ�&DVH�%DVHG

5HDVRQLQJ,� Hammond, K. J. Pensacola Beach, USA, 213-
217. Morgan Kaufmann, May-June.
Carpenter, G. and Grossberg, S. 1987. “ART 2: self-
organization of stable category recognition codes for
analog input patterns”. $SSOLHG�2SWLFV, 26, 4919—4930,
1987.
Corchado, J. M., and Lees, B., 2000 Adaptation of Cases
for Case Based Forecasting with Neural Network Support.
In Soft Computing in Case Based Reasoning, chapter 13.

Pal, S. K., Dillon, T. S., Yeung, D. S., eds. London,
England : Springer-Verlag.
Domeshek, E. 1993. A case study of case indexing:
designing index feature sets to suit task demands and
support parallelism.�$GYDQFHV�LQ�&RQQHFWLRQLVW�DQG�1HXUDO
&RPSXWDWLRQ�7KHRU\, 2��$QDORJLFDO�&RQQHFWLRQV, Bamden,
J. and Holyoak, K.. Norwood, USA. Ablex.
Fabiunke, M. Kock, G. Milaré, C. and Carvalho, A. 1997.
A Hybrid System Integrating Neural Network and Case-
Based Reasoning Features. 7HFKQLFDO�5HSRUW, ISSN-0103-
2569, Institute of Mathematical Sciences and Computing,
University of São Paulo. São Carlos, Brazil.
Haykin, S. 1994. Neural Networks. A Comprehensive
Foundation. Macmillan College Publishing Company.
Hamilton, Canada.
Hilario, M., 1997 $Q� 2YHUYLHZ� RI� 6WUDWHJLHV� IRU

1HXURV\PEROLF� ,QWHJUDWLRQ. In Connectionist Symbolic
Integration, chapter 1. Hillsdale, NJ : Lawrence Erlbaum,.
Kolodner, J. 1993. &DVH�EDVHG� UHDVRQLQJ. Morgan
Kaufmann.
Malek, M., 2000 +\EULG� $SSURDFKHV� IRU� ,QWHJUDWLQJ

1HXUDO� 1HWZRUNV� DQG� &DVH� %DVHG� 5HDVRQLQJ��)URP

/RRVHO\� &RXSOHG� WR� 7LJKWO\� &RXSOHG� 0RGHOV. In Soft
Computing in Case Based Reasoning, chapter 4. Pal, S. K.,
Dillon, T. S., Yeung, D. S., eds. London, England :
Springer-Verlag.
Petridis, V. and Paraschidis, K. 1993. Structural adaptation
based on a simple learning algorithm. ,QWHUQDWLRQDO� -RLQW
&RQIHUHQFH� RQ�1HXUDO�1HWZRUNV, 1, 621-623, Baltimore,
USA.
Reategui, E. and Campbell, J. 1994. A classification
system for credit card transactions. (XURSHDQ�:RUNVKRS�RQ

&DVH�%DVHG�5HDVRQLQJ, Keane, M., Haton, J. and Manago,
M. 167-174, Chantilly, France.
Sase, M., Matsui, K. and Kosugi, Y. 1993. Inter-
generational architecture adaptation of neural networks�
,QWHUQDWLRQDO� -RLQW� &RQIHUHQFH� RQ� 1HXUDO� 1HWZRUNV, 3,
2941-2944, Baltimore, USA.
Shin, C-K, and Park, S. C., 2000 Towards Integration of
Memory Based Learning and Neural Networks. In Soft
Computing in Case Based Reasoning, chapter 5. Pal, S. K.,
Dillon, T. S., Yeung, D. S., eds. London, England :
Springer-Verlag.
Tetko, I. V., 2001 $VVRFLDWLYH�1HXUDO�1HWZRUN, CogPrints
archive code: cog0000144, http://cogprints.soton.ac.uk.
Thrift, P. 1989. A neural network model for case-based
reasoning�� :RUNVKRS� RQ� &DVH�%DVHG� 5HDVRQLQJ,
Hammond, K. Pensacola Beach, USA, 334-337, Morgan
Kaufmann, May-June.
Wendel, O. 1993. Case based reasoning in a simulation
environment for biological neural networks.)LUVW

(XURSHDQ�:RUNVKRS�RQ�&DVH�%DVHG�5HDVRQLQJ. Wess, S.,
Althoff, K. and Richter M., University of Kaiserslauten,
Kaiserslauten, Germany, 1, 1-5.

